Source code for deepxde.backend.tensorflow_compat_v1.tensor

"""tensorflow.compat.v1 backend implementation"""
from packaging.version import Version

import tensorflow.compat.v1 as tf


if Version(tf.__version__) < Version("2.7.0"):
    raise RuntimeError("DeepXDE requires TensorFlow>=2.7.0.")


# The major changes from TensorFlow 1.x to TensorFlow 2.x are:
# 1. Eager execution: enable_eager_execution(), disable_eager_execution()
# 2. Resource variables: enable_resource_variables(), disable_resource_variables()
# 3. Tensor shapes: enable_v2_tensorshape(), disable_v2_tensorshape()
# 4. Control flow: enable_control_flow_v2(), disable_control_flow_v2()
# 5. Tensors comparison: enable_tensor_equality(), disable_tensor_equality()
# 6. Some internal uses of tf.data symbols
# For more details, see
# - https://www.tensorflow.org/guide/migrate
# - the source code of disable_v2_behavior()

# We can simply disable all TensorFlow 2.x behaviors by disable_v2_behavior(), but some
# features in TensorFlow 2.x are useful such as `Tensor shapes`. Actually we use `Tensor
# shapes` in DeepXDE.
tf.disable_v2_behavior()
tf.enable_v2_tensorshape()

# In terms of functionality, we only need to disable eager mode.
# tf.disable_eager_execution()
# It hurts performance a lot (only in some cases?) if enabling tensor equality.
# tf.disable_tensor_equality()
# It hurts performance a little (only in some cases?) if enabling resource variables.
# tf.disable_resource_variables()
# It hurts performance a little (only in some cases?) if enabling control flow.
# tf.disable_control_flow_v2()


lib = tf


[docs] def data_type_dict(): return { "float16": tf.float16, "float32": tf.float32, "float64": tf.float64, "uint8": tf.uint8, "int8": tf.int8, "int16": tf.int16, "int32": tf.int32, "int64": tf.int64, "bool": tf.bool, }
[docs] def is_gpu_available(): return bool(tf.config.list_physical_devices("GPU"))
[docs] def is_tensor(obj): return tf.is_tensor(obj)
[docs] def shape(input_tensor): return input_tensor.shape.as_list()
[docs] def size(tensor): return tf.get_static_value(tf.size(tensor)).item()
[docs] def ndim(input_tensor): return len(input_tensor.shape)
[docs] def transpose(tensor, axes=None): return tf.transpose(tensor, perm=axes)
[docs] def reshape(tensor, shape): return tf.reshape(tensor, shape)
[docs] def Variable(initial_value, dtype=None): if dtype is None: dtype = tf.keras.backend.floatx() return tf.Variable(initial_value=initial_value, trainable=True, dtype=dtype)
[docs] def as_tensor(data, dtype=None): if tf.is_tensor(data): if dtype is None or data.dtype == dtype: return data return tf.cast(data, dtype) return tf.convert_to_tensor(data, dtype=dtype)
[docs] def sparse_tensor(indices, values, shape): return tf.sparse.SparseTensor(indices, values, shape)
[docs] def from_numpy(np_array): # Do memory copy: # https://stackoverflow.com/questions/47519802/does-tensorflow-convert-to-tensor-do-memory-copy # To avoid memory copy, use implicit conversion, but memory copy is still possible. # https://www.tensorflow.org/tutorials/customization/basics#numpy_compatibility return tf.convert_to_tensor(np_array)
[docs] def concat(values, axis): return tf.concat(values, axis)
[docs] def stack(values, axis): return tf.stack(values, axis)
[docs] def expand_dims(tensor, axis): return tf.expand_dims(tensor, axis)
[docs] def reverse(tensor, axis): return tf.reverse(tensor, axis)
[docs] def roll(tensor, shift, axis): return tf.roll(tensor, shift, axis)
[docs] def lgamma(x): return tf.math.lgamma(x)
[docs] def elu(x): return tf.nn.elu(x)
[docs] def relu(x): return tf.nn.relu(x)
[docs] def selu(x): return tf.nn.selu(x)
[docs] def sigmoid(x): return tf.math.sigmoid(x)
[docs] def silu(x): return tf.keras.activations.swish(x)
[docs] def sin(x): return tf.math.sin(x)
[docs] def cos(x): return tf.math.cos(x)
[docs] def exp(x): return tf.math.exp(x)
[docs] def square(x): return tf.math.square(x)
# pylint: disable=redefined-builtin
[docs] def abs(x): return tf.math.abs(x)
[docs] def minimum(x, y): return tf.math.minimum(x, y)
[docs] def tanh(x): return tf.math.tanh(x)
[docs] def pow(x, y): return tf.math.pow(x, y)
[docs] def mean(input_tensor, dim, keepdims=False): return tf.math.reduce_mean(input_tensor, axis=dim, keepdims=keepdims)
[docs] def reduce_mean(input_tensor): return tf.math.reduce_mean(input_tensor)
[docs] def sum(input_tensor, dim, keepdims=False): return tf.math.reduce_sum(input_tensor, axis=dim, keepdims=keepdims)
[docs] def reduce_sum(input_tensor): return tf.math.reduce_sum(input_tensor)
[docs] def prod(input_tensor, dim, keepdims=False): return tf.math.reduce_prod(input_tensor, axis=dim, keepdims=keepdims)
[docs] def reduce_prod(input_tensor): return tf.math.reduce_prod(input_tensor)
# pylint: disable=redefined-builtin
[docs] def min(input_tensor, dim, keepdims=False): return tf.math.reduce_min(input_tensor, axis=dim, keepdims=keepdims)
[docs] def reduce_min(input_tensor): return tf.math.reduce_min(input_tensor)
# pylint: disable=redefined-builtin
[docs] def max(input_tensor, dim, keepdims=False): return tf.math.reduce_max(input_tensor, axis=dim, keepdims=keepdims)
[docs] def reduce_max(input_tensor): return tf.math.reduce_max(input_tensor)
[docs] def norm(tensor, ord=None, axis=None, keepdims=False): if ord is None: ord = "euclidean" return tf.norm(tensor, ord=ord, axis=axis, keepdims=keepdims)
[docs] def zeros(shape, dtype): return tf.zeros(shape, dtype=dtype)
[docs] def zeros_like(input_tensor): return tf.zeros_like(input_tensor)
[docs] def matmul(x, y): return tf.linalg.matmul(x, y)
[docs] def sparse_dense_matmul(x, y): return tf.sparse.sparse_dense_matmul(x, y)
[docs] def l1_regularization(l1): return tf.keras.regularizers.L1(l1=l1)
[docs] def l2_regularization(l2): return tf.keras.regularizers.L2(l2=l2)
[docs] def l1_l2_regularization(l1, l2): return tf.keras.regularizers.L1L2(l1=l1, l2=l2)