Klein-Gordon equation
Problem setup
We will solve a Klein-Gordon equation:
with initial conditions
and Dirichlet boundary conditions
We also specify the following parameters for the equation:
The reference solution is \(y(x, t) = x\cos(t)\).
Implementation
This description goes through the implementation of a solver for the above described Klein-Gordon equation step-by-step.
First, the DeepXDE, NumPy, TensorFlow, Maplotlib, and SciPy modules are imported.
import deepxde as dde
import matplotlib.pyplot as plt
import numpy as np
from deepxde.backend import tf
from scipy.interpolate import griddata
We begin by defining computational geometries. We can use a built-in class Interval
and TimeDomain
and we combine both the domains using GeometryXTime
as follows
geom = dde.geometry.Interval(-1, 1)
timedomain = dde.geometry.TimeDomain(0, 10)
geomtime = dde.geometry.GeometryXTime(geom, timedomain)
Next, we express the PDE residual of the Klein-Gordon equation:
def pde(x, y):
alpha, beta, gamma, k = -1, 0, 1, 2
dy_tt = dde.grad.hessian(y, x, i=1, j=1)
dy_xx = dde.grad.hessian(y, x, i=0, j=0)
x, t = x[:, 0:1], x[:, 1:2]
return (
dy_tt
+ alpha * dy_xx
+ beta * y
+ gamma * (y ** k)
+ x * tf.cos(t)
- (x ** 2) * (tf.cos(t) ** 2)
)
The first argument to pde
is a 2-dimensional vector where the first component(x[:, 0:1]
) is the \(x\)-coordinate and the second component (x[:, 1:2]
) is the \(t\)-coordinate. The second argument is the network output, i.e., the solution \(y(x, t)\).
The reference solution func
is then defined as the following.
def func(x):
return x[:, 0:1] * np.cos(x[:, 1:2])
Next, we consider the boundary/initial conditions. on_boundary
is chosen here to use the whole boundary of the computational domain as the boundary condition. We include the geomtime
space/time geometry created above and on_boundary
as the BC in the DirichletBC
function of DeepXDE. We also define IC
which is the initial conditon for the Klein-Gordon equation, and we use the computational domain, initial function, and on_initial
to specify the IC. Finally, we specify the initial condition for the first derivative of the \(y\)-coordinate with respect to the \(t\)-coordinate through the OperatorBC
function of DeepXDE.
bc = dde.icbc.DirichletBC(geomtime, func, lambda _, on_boundary: on_boundary)
ic_1 = dde.icbc.IC(geomtime, func, lambda _, on_initial: on_initial)
ic_2 = dde.icbc.OperatorBC(
geomtime,
lambda x, y, _: dde.grad.jacobian(y, x, i=0, j=1),
lambda _, on_initial: on_initial,
)
Now, we have specified the geometry, PDE residual, and the boundary/initial conditions. We then define the TimePDE
problem as the following.
data = dde.data.TimePDE(
geomtime,
pde,
[bc, ic_1, ic_2],
num_domain=30000,
num_boundary=1500,
num_initial=1500,
solution=func,
num_test=6000,
)
The number 30000 is the number of training residual points sampled inside of the domain, and the number 1500 is the number of training residual points sampled on the boundary. We also include 1500 initial residual points for the initial conditions and 6000 points for testing the PDE residual.
Next, we choose the network. Here, we use a fully connected neural network of depth 3 (i.e., 2 hidden layers) and width 40.
layer_size = [2] + [40] * 2 + [1]
activation = 'tanh'
initializer = 'Glorot uniform'
net = dde.nn.FNN(layer_size, activation, initializer)
Now, we have the PDE problem and the network. We build a Model
and choose the optimizer and learning rate. We also implement a learning rate decay to reduce overfitting of the model.
model = dde.Model(data, net)
model.compile(
"adam", lr=0.001, metrics=["l2 relative error"], decay=("inverse time", 3000, 0.9)
)
We also compute the \(L^2\) relative error as a metric during training.
We then train the model for 20000 iterations.
model.train(iterations=20000)
After we train the network with Adam, we compile again and continue to train the network using L-BFGS to achieve a smaller loss.
model.compile('L-BFGS', metrics=['l2 relative error')
losshistory, train_state = model.train()
We then save and plot the best trained result and loss history of the model.
dde.saveplot(losshistory, train_state, issave=True, isplot=True)
Finally, we use the trained model to plot the predicted solution of the Klein-Gordon equation.
x = np.linspace(-1, 1, 256)
t = np.linspace(0, 10, 256)
X, T = np.meshgrid(x, t)
X_star = np.hstack((X.flatten()[:, None], T.flatten()[:, None]))
prediction = model.predict(X_star, operator=None)
v = griddata(X_star, prediction[:, 0], (X, T), method='cubic')
fig, ax = plt.subplots()
ax.set_title("Results")
ax.set_ylabel("Prediction")
ax.imshow(
v.T,
interpolation="nearest",
cmap="viridis",
extent=[0, 10, -1, 1],
origin="lower",
aspect="auto",
)
plt.show()
Complete code
"""Backend supported: tensorflow.compat.v1, tensorflow, paddle"""
import deepxde as dde
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import griddata
geom = dde.geometry.Interval(-1, 1)
timedomain = dde.geometry.TimeDomain(0, 10)
geomtime = dde.geometry.GeometryXTime(geom, timedomain)
# Define sine function
if dde.backend.backend_name in ["tensorflow.compat.v1", "tensorflow"]:
from deepxde.backend import tf
cos = tf.math.cos
elif dde.backend.backend_name == "paddle":
import paddle
cos = paddle.cos
def pde(x, y):
alpha, beta, gamma, k = -1, 0, 1, 2
dy_tt = dde.grad.hessian(y, x, i=1, j=1)
dy_xx = dde.grad.hessian(y, x, i=0, j=0)
x, t = x[:, 0:1], x[:, 1:2]
return (
dy_tt
+ alpha * dy_xx
+ beta * y
+ gamma * (y ** k)
+ x * cos(t)
- (x ** 2) * (cos(t) ** 2)
)
def func(x):
return x[:, 0:1] * np.cos(x[:, 1:2])
bc = dde.icbc.DirichletBC(geomtime, func, lambda _, on_boundary: on_boundary)
ic_1 = dde.icbc.IC(geomtime, func, lambda _, on_initial: on_initial)
ic_2 = dde.icbc.OperatorBC(
geomtime,
lambda x, y, _: dde.grad.jacobian(y, x, i=0, j=1),
lambda _, on_initial: on_initial,
)
data = dde.data.TimePDE(
geomtime,
pde,
[bc, ic_1, ic_2],
num_domain=30000,
num_boundary=1500,
num_initial=1500,
solution=func,
num_test=6000,
)
layer_size = [2] + [40] * 2 + [1]
activation = "tanh"
initializer = "Glorot uniform"
net = dde.nn.FNN(layer_size, activation, initializer)
model = dde.Model(data, net)
model.compile(
"adam", lr=0.001, metrics=["l2 relative error"], decay=("inverse time", 3000, 0.9)
)
model.train(iterations=20000)
model.compile("L-BFGS", metrics=["l2 relative error"])
losshistory, train_state = model.train()
dde.saveplot(losshistory, train_state, issave=True, isplot=True)
x = np.linspace(-1, 1, 256)
t = np.linspace(0, 10, 256)
X, T = np.meshgrid(x, t)
X_star = np.hstack((X.flatten()[:, None], T.flatten()[:, None]))
prediction = model.predict(X_star, operator=None)
v = griddata(X_star, prediction[:, 0], (X, T), method="cubic")
fig, ax = plt.subplots()
ax.set_title("Results")
ax.set_ylabel("Prediciton")
ax.imshow(
v.T,
interpolation="nearest",
cmap="viridis",
extent=[0, 10, -1, 1],
origin="lower",
aspect="auto",
)
plt.show()